数控技术是制造业实现自动化、柔性化、集成化生产的基地,价格优惠!张工/ 182-019-88-309 Q//87-88-56-087,欢迎咨询是现代制造技术的核心,是提高制造业的产品质量和劳动生产率必不可少的重要手段。
目录
1发展历程
2发展重点
3应用范围
4行业发展
1发展历程
编辑
我国数控机床产业度过了激情燃烧的岁月,将迎来理性发展的时代。第十个五年计划是我国数控机床高速发展时期,那么第十一个五年计划将是数控机床发展的战略机遇期。战略机遇主要表现在:“十一五”我国国民经济在科学发展观指引下,将更加稳定有序发展;国务院关于振兴装备制造业的决定,将大大加快我国装备制造业的发展进程,特别是国家重点支持的一批重大装备的发展,如大型发电、输变电设备、大型石油化工和煤化工装置、矿山采掘设备、成套轧钢设备、大型海洋船舶、高速列车、大端面岩石掘进机为代表的工程机械、民用航空飞机及发动机等,需要提供大批重型、精密、多坐标、高效、专用数控机床进行加工制造。国家重大装备的发展需求,给数控机床产业的发展指明了方向。
“十一五”规划的经济发展重点在于实现经济增长方式的转变,先进制造业是传统制造业的改造方向,传统工业如汽车、机械、家电、纺织、农机、环保等行业的技术改造,对数控机床的需求继续攀升;电子信息、生物工程、新能源新材料等高新技术产业的发展又为精密、高效、专用数控机床开辟了新的需求;从地域发展分析,我国东部产业的升级、东北等老工业基地的振兴和中西部的开发加快步伐,为数控机床产业发展提供国内市场;经济全球化,国际资本和产业向中国的转移、国际技术和人才的交流、中国国际贸易的强劲发展等,为我国数控机床产业的发展提供了外部环境,使我们处于难得的战略发展期。所谓战略机遇是指在一个相对较长的时间、相对广阔的空间,对整个产业发展有重大影响的特殊时期。战略机遇不可多得,抓住战略机遇,加快发展,是我国数控机床产业取胜之大略。
根据国际数控机床产业发展的趋势和我国“十一五”国民经济发展要求, “十一五”数控机床产业的重点是:发展大型、精密、高速数控装备和数控系统及功能部件,改变大型、高精度数控机床大部分依赖进口的现状,满足机械、航空航天等工业发展。
2发展重点
编辑
▲ 重点发展关键功能部件和数控系统,为数控产品升级奠定基础。主要发展项目包括中高档数控系统、高速主轴及其伺服单元、高性能刀库机械手、高速滚珠丝杠和直线导轨副、直线电机、全功能数控刀架和数控转台、高速防护装置等。
▲ 高精度数字化测量仪器和数控刀具。
▲ 满足国家重点工程需要,实施高级型数控机床示范工程。
3应用范围
编辑
1、高速、精密数控车床,车削中心类及四轴以上联动的复合加工机床。主要满足航天、航空、仪器、仪表、电子信息和生物工程等产业的需要。
2、高速、高精度数控铣镗床及高速、高精度立卧式加工中心。主要满足汽车发动机缸体缸盖及航天航空、高新技术等行业大型复杂结构支架、壳体、箱体、轻金属材料零件和精密零件加工需求。
3、重型、超重型数控机床类:数控落地铣镗床、重型数控龙门镗铣床和龙门加工中心、重型数控卧式车床及立式车床,数控重型滚齿机等,该类产品满足能源、航天航空、军工、舰船主机制造、重型机械制造、大型模具加工、汽轮机缸体等行业零件加工需求。
4、数控磨床类:数控超精密磨床、高速高精度曲轴磨床和凸轮轴磨床、各类高精高速专用磨床等,满足精密超精密加工需求。
5、数控电加工机床类:大型精密数控电火花成形机床、数控低速走丝电火花切割机床、精密小孔电加工机床等,主要满足大型和精密模具加工、精密零件加工、锥孔或异型孔加工及航天、航空等行业的特殊需求。
6、数控金属成形机床类(锻压设备):数控高速精密板材冲压设备、激光切割复合机、数控强力旋压机等,主要满足汽车、摩托车、电子信息产业、家电等行业板金批量高效生产需求及汽车轮毂及军工行业各种薄壁、高强度、高精度回转型零件加工需求。
7、数控专用机床及生产线:柔性加工自动生产线(FMS/FMC)及各种专用数控机床,该类生产线是针对汽车、家电等行业加工缸体、缸盖、变速箱箱体等及多品种变批量壳体、箱体类零件加工需求。
4行业发展
编辑
机床制造商不断地推进新产品,来帮助工具制造商和修磨工厂提高工作效率和降低成本。为了提高机床的利用率和降低劳动成本,自动化日益受到重视。同时通过开发软件使机床拓宽操作的功能,并能在生产批量小和交货周期短的情况下,经济地安排生产进度。此外,加大机床功率,使之能适应多样化的需求和拓宽磨制刀具的规格范围。[1]
今后数控工具磨床的发展主要体现在三个方面:
1、自动化:工具制造厂生产新刀具时,由于批量大,所以效率高。但刀具修磨厂就没有这种条件,只有通过自动化来解决效率问题。刀具修磨商并不要求机床实现无人操作,但希望一名操作者能够看管多台机床以控制成本。
2、高精度:许多制造商把减少操作时间作为首要目标,但另外一些厂商却把零件质量放在最重要的位置(如高精度刀具和医用零部件制造商)。随着磨床生产技术的改进,新近开发的机床能够保证非常严格的公差和超常的光洁度。
3、应用软件的开发:现在工厂希望磨削加工的自动化程度越高越好,不管生产批量大小,问题的关键是实现柔性化。国际模协秘书长罗百辉表示,协会刀具委员会近年的工作就包括致力于建立一套刀具和砂轮的自动装卸系统,以实现磨削过程无人看管或尽量减少看管。他强调,软件的重要性日益增加的原因是:有能力手工操作磨制复杂刀具的高水平工人数量在减少。另外,手工制作的刀具也难于满足现代机床对切削速度和精度的要求。与CNC磨削相比,手工磨削会降低切削刃的质量和一致性。因为手工磨削时,刀具要靠在支承片上,砂轮磨削方向指向切削刃,这就会产生刃口毛刺。而CNC磨削则相反,工作时不用支承片,磨削方向背离切削刃,就不会产生刃口毛刺。[2]
全国百科
百科词条
成语词典
汉英词典
百科目录
汉语词典
百科问答
英汉词典
诗词大全
会员
发布
您现在的位置:首页 > 技术文库 > 机械制造 > 文章内容:伺服驱动器重要参数的设置方法和技巧
伺服驱动器重要参数的设置方法和技巧
随着市场的发展和国内功率电子技术、微电子技术、计算机技术及控制原理等技术的进步,国内数控系统、交流伺服驱动器及伺服电动机这两年有了较大的
发展,在某些应用领域打破了国外的垄断局面。笔者因多年从事数控技术工作,使用了多套日本安川、松下、三洋等数字伺服,但最近因国产伺服性价比好,使
用了一些数控技术公司生产的交流伺服驱动及电动机,对使用中某些方面总结了一些简单实用的技巧。
1 KNDSD100基本性能
1.1 基本功能
SD100采用国际上先进的数字信号处理器(DSP)TM320(S240)、大规模可编程门阵列(FPGA)、日本三菱的新一代智能化功率模块(1PM),集成度高,体积小,具有超速、过流、过载、主电源过压欠压、编码器异常和位置超差等保护功能。
与步进电动机相比,交流伺服电动机无失步现象。伺服电动机自带编码器,位置信号反馈至伺服驱动器,与开环位置控制器一起构成半闭环控制系统。调速比宽 1:5000,转矩恒定,1 r和2000r的扭矩基本一样,从低速到高速都具有稳定的转矩特性和很快的响应特性。采用全数字控制,控制简单灵活。用户通过参数修改可以对伺服的工作方式、运行特性作出适当的设置。目前价格仅比步进电动机高2000~3000元。
1.2 参数调整
SD100为用户提供了丰富的用户参数0~59个,报警参数1~32个,监视方式(电动机转速,位置偏差等)22个。用户可以根据不同的现场情况调整参数,以达到最佳控制效果。几种常用的参数的含义是:
(1)“0”号为密码参数,出厂值315,用户改变型号必须将此密码改为385。
(2)“1”号为型号代码,对应同系列不同功率级别的驱动器和电动机。
(3)“4”号为控制方式选择,改变此参数可设置驱动器的控制方式。其中,“0”为位置控制方式;“1”为速度控制方式;“2”为试运行控制方式;“3”为JOG控制方式;“4”为编码器调零方式;“5”为开环控制方式(用户测试电压及编码器);“6”为转矩控制方式。
(4)“5”号为速度比例增益,出厂值为150。此设置值越大,增益越高,刚度越高。参数设置根据具体的伺服驱动型号和负载情况设定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡情况下,应尽量设定较大些。
(5)“6”号为速度积分时间常数,出厂值为20。此设定值越小,积分速度越快,太小容易产生超调,太大使响应变慢。参数设置根据具体的伺服驱动型号和负载确定。一般情况下,负载惯量越大,设定值越大。
(6)“40”、“4l”号为加减速时间常数,出厂设定为0。此设定值表示电动机以0~100r/min转速所需的加速时间或减速时间。加减速特性呈线性。
(7)“9”号为位置比例增益,出厂没定为40。此设置值越大,增益越高,刚度越高,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调。参数数值根据具体的伺服驱动型号和负载情况而定。
2 KNDSD100的参数设置技巧
SD100伺服驱动器和凯恩帝数控系统相配时,只需设定表1中的参数,其余参数,一般情况下,不用修改。
电子齿轮比的设置如下:配KND-SD100伺服驱动器,应将KND系统的电子齿轮比设置为CMR/CMD=1:1,。KND-SD100伺服驱动器电子齿轮比设置为
位置指令脉冲分频分子(PA12)/位置指令脉冲分频分母(PA13)=4×2500(编码器条纹数)/带轮比×丝杠螺距×1000
分子分母可约成整数。
对于车床,如果X轴以直径编程,以上公式分母应乘以2,即:
位置指令脉冲分频分子(PA12)/位置指令脉冲分频分母(PA13)=4×2500(编码器条纹数)/带轮比×丝杠螺距×1000×2
例:X轴丝杠螺距为4mm,1:1传动;Z轴丝杠螺距为6mm,1:2减速传动,则X轴驱动器的电子齿轮比为
PA12/PA13=4×2500/(1×4×1000×2)=5/4。
Z轴驱动器的电子齿轮比为
PA12/PA13=4×2500/(6×1000×1/2)(减速传动比)=10/3
所以,对于X轴驱动器,PA/2/PA/3应设定为5/4,对于Z轴驱动器,PA12/PA13应设定为10/3。
3 KNDSD100的参数优化技巧
(1) 根据上述设置好SD100伺服驱动器参数后,开始优化调整伺服性能,即驱动增益参数的调整。一般SD100驱动器保持缺省的增益参数,基本可以满足用户的加工要求。在缺省增益运行电动机时,如果电动机发出异常声音,则要首先考虑电动机轴的安装是否存在问题。经检查问题后可考虑采用共振抑制的办法,修改7号参数(转矩滤波器)和8号参数(速度检测低通滤波器)来抑制电动机产生的振动。7、8号参数缺省参数为100,可试着每次将7、8号参数分别减少10,按确认键。运行电动机,如还不正常,再减少10,直到电动机无异常声音。一般7,8号参数的调整范围为20~80之间,这样基本能达到共振抑制的效果。
(2) 保持出厂参数时达不到加工效果,比如车床车出的斜面粗糙度值大,可试着再调整如下参数:①速度比例增益PA5的调整:确认驱动器正常启动,用数控系统手动控制电动机转动(机床移动)。确认如果电动机不振动,加大调整此参数。设定值越大,刚性越大,机床的定位精度越高,每次加大数值5,直到产生振动,将此值减小到稳定后,再将此值减10;②位置比例增益PA9:在稳定范围内,尽量设置得较大,这样机床跟踪特性好,滞后误差小。同速度比例增益的调整相似,在不产生振动的情况下应尽可能调大此值;③如以上两参数提高后还达不到加工效果,可采用调整7、8号参数的方法进行振动的抑制参数调整。调整后,驱动器5、9 号参数可以再向上调一些,这样应该可以满足用户的加工要求。
4 KNDSD100的故障处理技巧
一旦出现报警信号,伺服单元将禁止电动机运行,以及对用户参数的调整,直至断电后重新上电。用户可以根据显示的报警信息来判断故障的类型以及引起故障的原因。具体故障处理办法可以参考SD100用户手册。如果连报警都没有,那自然就是驱动器故障。当然,还有可能是伺服根本没有故障,而是控制信号或上位机有问题导致伺服没有动作。
除了看驱动器上的错误、报警号,查手册外,有时最直接的判断就是互换,如数控车床的X轴和Z轴互换(型号相同才可以)。或在伺服电动机功率差距不大的情况下,修改伺服驱动器某些特征参数(如KNDSD100的“1”号型号代码参数),短时间内互换,确定故障后再换回来是可以的。
还可以通过修改数控系统参数,将某轴如X轴锁住,不让系统检测X轴,达到判断目的。但应注意:X轴与Z轴互换,即使型号相同,机床可能因为负载不同、参数不同而产生问题。在确认检查方案动手前,一定要考虑全面,以免造成不必要的损失。
再有,因为交流伺服单元通常使用数控系统统一供电系统,三相交流220 V的电压来自伺服变压器。所以在操作过程中必须符合操作规范。例如:U、V、W三相输出必须按照正确的顺序连接,否则电动机将不能正常运转,将给出报警信号,并禁止电动机运行。
此外,还可以利用报警表(表2)提示来处理故障。
5 伺服电动机的其他问题处理技巧
(1)电动机窜动:在进给时出现窜动现象,测速信号不稳定,如编码器有裂纹;接线端子接触不良,如螺钉松动等;当窜动发生在由正方向运动与反方向运动的换向瞬间时,一般是由于进给传动链的反向问隙或伺服驱动增益过大所致;
(2) 电动机爬行:大多发生在起动加速段或低速进给时,一般是由于进给传动链的润滑状态不良,伺服系统增益低及外加负载过大等因素所致。尤其要注意的是,伺服电动机和滚珠丝杠联接用的联轴器,由于连接松动或联轴器本身的缺陷,如裂纹等,造成滚珠丝杠与伺服电动机的转动不同步,从而使进给运动忽快忽慢;
(3)电动机振动:机床高速运行时,可能产生振动,这时就会产生过流报警。机床振动问题一般属于速度问题,所以应寻找速度环问题;
(4)电动机转矩降低:伺服电动机从额定堵转转矩到高速运转时,发现转矩会突然降低,这时因为电动机绕组的散热损坏和机械部分发热引起的。高速时,电动机温升变大,因此,正确使用伺服电动机前一定要对电动机的负载进行验算;
(5) 电动机位置误差:当伺服轴运动超过位置允差范围时(KNDSD100出厂标准设置PA17:400,位置超差检测范围),伺服驱动器就会出现“4”号位置超差报警。主要原因有:系统设定的允差范围小;伺服系统增益设置不当;位置检测装置有污染;进给传动链累计误差过大等;
(6)电动机不转:数控系统到伺服驱动器除了联结脉冲+方向信号外,还有使能控制信号,一般为DC+24 V继电器线圈电压。伺服电动机不转,常用诊断方法有:检查数控系统是否有脉冲信号输出;检查使能信号是否接通;通过液晶屏观测系统输入/出状态是否满足进给轴的起动条件;对带电磁制动器的伺服电动机确认制动已经打开;驱动器有故障;伺服电动机有故障;伺服电动机和滚珠丝杠联结联轴节失效或键脱开等。
6 结语
综上所述,数控机床伺服驱动器的正确使用除按用户手册正确设置参数外,还应结合使用现场和负载情况,灵活操作。实际工作中,使用者只有具备较强的参数理解能力和实践技能,才能摸索出调试驱动器和电动机的技巧,才能用好伺服驱动和伺服电动机。
相关文章
·伺服阀与液压传动元件介紹
·台安TP03与JS DA系列伺服驱动器在剪板机上的
·重型普通车床技术参数
·车轴滚压车床技术参数
·齿条插齿机技术参数
·半自动仿形车床技术参数
·双点电动机械压力机技术参数
·螺纹铣床技术参数
·车铣床技术参数
·研祥EIP在数控机床的应用解决方案介绍
·卧轴矩台平面磨床型号及主要技术参数
·闭环伺服系统的连接
级别: *
发送短信加为好友精华主题: * 篇
发帖数量: * 个
工控威望: * 点
下载积分: * 分
在线时间: (小时)
注册时间: *
最后登录: *
访问gzkowo的个人主页 楼主 发表于: 2011-05-29 10:58 只看楼主 | 小 中 大
交流伺服系统基本参数与设定.doc (26 K) 下载次数:82 交流伺服系统基本参数与设定
大部分交流伺服系统位置环均采用比例调节器,因为积分调节虽然可以减小系统的静差,但是会产生位置超调,在需要高跟随性能的系统中,可以增加位置前馈增益参数。速度环和电流环采用比例积分调节器。下面对影响数控机床性能的交流伺服主要参数及意义说明如下:
1.速度比例增益参数
主要是设定速度环调节器的比例增益,增益越高,刚度越大,参数数值根据具体的伺服驱动系统型号和负载情况确定,一般情况下,负载惯量越大,设定值越大。
2.速度积分频率参数(速度积分频率为速度积分时间的倒数)
广州科沃—CNC伺服维修专家
主要是设定速度环调节器的积分频率,积分频率越大,刚度越大,参数数值根据具体的伺服驱动系统型号和负载情况确定,一般情况下,负载惯量越大,设定值越小。
3.速度检测低通滤波器参数,
主要是设定速度检测低通滤波器特性,数值越小,截止频率越低,电机产生的噪音越小,如果负载惯量很大,可以适当减小设定值。数值太小,造成响应变慢,可能会引起振荡。
4.位置比例增益参数,
主要是设定位置环调节器的比例增益,设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小,但数值太大可能会引起振荡或超调。
5.电流积分频率参数,
主要是设定电流环调节器的积分频率,积分频率越大,积分速度越快,电流跟踪误差越小,但积分时间太大,会产生噪声或振荡,该参数仅与伺服驱动器和电机有关,与负载无关,一般情况下,电机的电磁时间常数越大,积分频率越小,在系统不产生振荡的条件下,该参数尽量设定的较大。
6.电流比例增益参数,主要是设定电流环调节器的比例增益,增益越高,电流跟踪误差越小,但增益太高,会产生噪声或振荡,该参数仅于伺服驱动器和电机有关,与负载无关,在系统不产生振荡的条件下,该参数尽量设定的较大。
7.电流或转矩指令低通滤波器截止频率参数,
该参数主要是设定电流或转矩指令低通滤波器截止频率,用来限制电流或转矩指令频带,避免电流或转矩冲击和振荡,使电流、转矩响应平稳。
调节改变交流伺服参数,伺服系统的特性发生改变,比例环节参数的作用即成比例的反映控制系统的偏差信号,当偏差一旦产生,控制器立即产生控制作用,以减少偏差;积分环节作用主要用于消除静差,提高系统的无差度;滤波器的作用主要限制反馈指令的频带,避免外部干扰冲击和震荡,控制系统响应平稳。
在数控机床系统中,交流伺服较高的速度、电流增益可以带来高的伺服系统响应和刚度,因此可以减小机床的加工形状误 差,提高定位速度。因此做为一般的调整规则,在整个机床允许的情况下,速度电流增益以及积分时间常数尽量调高,以减少系统的静差,提高系统的刚度。
在自动化设备中,经常用到伺服电机,特别是位置控制,
大部分品牌的伺服电机都有位置控制功能,通过控制器发出脉冲来控制伺服电机运行,
脉冲数对应转的角度,脉冲频率对应速度(与电子齿轮设定有关),
当一个新的系统,参数不能工作时,首先设定位置增益,确保电机无噪音情况下,尽量设大些,
转动惯量比也非常重要,可通过自学习设定的数来参考,
然后设定速度增益和速度积分时间,确保在低速运行时连续,位置精度受控即可。
1.位置比例增益:设定位置环调节器的比例增益。设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调。参数数值由具体的伺服系统型号和负载情况确定。
2.位置前馈增益:设定位置环的前馈增益。设定值越大时,表示在任何频率的指令脉冲下,位置滞后量越小位置环的前馈增益大,控制系统的高速响应特性提高,但会使系统的位置不稳定,容易产生振荡。不需要很高的响应特性时,本参数通常设为0表示范围:0~100%
3.速度比例增益:设定速度调节器的比例增益。设置值越大,增益越高,刚度越大。参数数值根据具体的伺服驱动系统型号和负载值情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较大的值。
4.速度积分时间常数:设定速度调节器的积分时间常数。设置值越小,积分速度越快。参数数值根据具体的伺服驱动系统型号和负载情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较小的值。
5.速度反馈滤波因子:设定速度反馈低通滤波器特性。数值越大,截止频率越低,电机产生的噪音越小。如果负载惯量很大,可以适当减小设定值。数值太大,造成响应变慢,可能会引起振荡。数值越小,截止频率越高,速度反馈响应越快。如果需要较高的速度响应,可以适当减小设定值。
6.最大输出转矩设置:设置伺服驱动器的内部转矩限制值。设置值是额定转矩的百分比,任何时候,这个限制都有效定位完成范围设定位置控制方式下定位完成脉冲范围。本参数提供了位置控制方式下驱动器判断是否完成定位的依据,当位置偏差计数器内的剩余脉冲数小于或等于本参数设定值时,驱动器认为定位已完成,到位开关信号为 ON,否则为OFF。
在位置控制方式时,输出位置定位完成信号,加减速时间常数设置值是表示电机从0~2000r/min的加速时间或从2000~0r/min的减速时间。加减速特性是线性的到达速度范围设置到达速度在非位置控制方式下,如果伺服电机速度超过本设定值,则速度到达开关信号为ON,否则为 OFF。在位置控制方式下,不用此参数。与旋转方向无关。
7.手动调整增益参数
调整速度比例增益KVP值。当伺服系统安装完后,必须调整参数,使系统稳定旋转。首先调整速度比例增益KVP值.调整之前必须把积分增益KVI及微分增益KVD调整至零,然后将KVP值渐渐加大;同时观察伺服电机停止时足否产生振荡,并且以手动方式调整KVP参数,观察旋转速度是否明显忽快忽慢.KVP值加大到产生以上现象时,必须将KVP值往回调小,使振荡消除、旋转速度稳定。此时的KVP值即初步确定的参数值。如有必要,经KⅥ和KVD调整后,可再作反复修正以达到理想值。
调整积分增益KⅥ值。将积分增益KVI值渐渐加大,使积分效应渐渐产生。由前述对积分控制的介绍可看出,KVP值配合积分效应增加到临界值后将产生振荡而不稳定,如同KVP值一样,将KVI值往回调小,使振荡消除、旋转速度稳定。此时的KVI值即初步确定的参数值。
调整微分增益KVD值。微分增益主要目的是使速度旋转平稳,降低超调量。因此,将KVD值渐渐加大可改善速度稳定性。
调整位置比例增益KPP值。如果KPP值调整过大,伺服电机定位时将发生电机定位超调量过大,造成不稳定现象。此时,必须调小KPP值,降低超调量及避开不稳定区;但也不能调整太小,使定位效率降低。因此,调整时应小心配合。
8.自动调整增益参数
现代伺服驱动器均已微计算机化,大部分提供自动增益调整( autotuning)的功能,可应付多数负载状况。在参数调整时,可先使用自动参数调整功能,必要时再手动调整。
事实上,自动增益调整也有选项设置,一般将控制响应分为几个等级,如高响应、中响应、低响应,用户可依据实际需求进行设置。